Sato's Bäcklund transformations, additional symmetries and ASvM formula for the discrete KP hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 J. Phys. A: Math. Theor. 43135202
(http://iopscience.iop.org/1751-8121/43/13/135202)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.157
The article was downloaded on 03/06/2010 at 08:42

Please note that terms and conditions apply.

Sato's Bäcklund transformations, additional symmetries and $A S v M$ formula for the discrete KP hierarchy

Liu Shaowei ${ }^{1}$ and Cheng Yi
Department of Mathematics, University of Science and Technology of China, Hefei, 230026 Anhui, People's Republic of China
E-mail: swliu@mail.ustc.edu.cn

Received 17 October 2009, in final form 3 February 2010
Published 9 March 2010
Online at stacks.iop.org/JPhysA/43/135202

Abstract

Two kinds of symmetries, Sato's Bäcklund transformations and additional symmetries, for the discrete KP (dKP) hierarchy are introduced, and the ASvM formula which demonstrates the equivalence of these two kinds of symmetries is obtained. In this process the Fay identity and the difference Fay identity of the dKP hierarchy are introduced and the ASvM formula in the form of tau function is calculated.

PACS number: 02.30.Ik
Mathematics Subject Classification: 17B80, 37K05, 37K10

1. Introduction

Symmetries and their algebra structures [1] are essential parts of the classical integrable system. They are closely related to other properties such as infinite conserved quantities, Hamiltonian structures, Bäcklund transformations, group-invariant solutions and their classification, etc. Before 1980, it was thought that the symmetry of a given soliton equation does not depend explicitly on the space variable x and the temporal variable t in a $(1+1)$-dimensional space. Later, however, the symmetry depending on x and t was given by several authors in the community of the soliton theory [2-5]. It is now called additional symmetry [6] by the definition of pseduo-differential operators. A remarkable fact of additional symmetry flows of the KP hierarchy [7, 8] is that they do not commute with each other although they are commutable with KP flows. In particular, the string equation, Virasoro and W constraints in the p-reduced KP hierarchy (or the p-Gelfand-Dickey hierarchy), which are used to prove Witten conjecture with $p=2$ by Kontsevich [9], are studied extensively through the additional symmetry flows $\partial_{t_{m, l}^{*}}=\partial_{m, l}^{*}$ by the introduction of new variables $t_{m, l}^{*}[10-14,26]$. On the

[^0]other hand, the infinitesimal Bäcklund transformation, which is an effective way to solve the integrable hierarchy and soliton equations, also defines symmetry. The Sato's Bäcklund transformation on the tau function of the KP hierarchy is given by the vertex operator $X(\lambda, \mu)$ acting on tau with two parameters [7, 15]. These two symmetry flows seem to be independent; however, they are actually equivalent, which was demonstrated through the ASvM formula in [16, 17]. In [26], the ASvM formula, as a useful tool, helps to develop a simple method to prove $\mathrm{D}-\mathrm{V}-\mathrm{V}$ and $\mathrm{F}-\mathrm{K}-\mathrm{N}$'s conjecture which was mentioned in [27, 28]. In addition, the ASvM formula of the BKP hierarchy was given by Johan [18] and Tu [14] using different methods.

The discrete KP (dKP) hierarchy $[19,20]$ defined by the difference operator Δ is an interesting object for the current research of the integrable system. The Hamiltonian structures, the existence of the tau function and the gauge transformation operators for the dKP hierarchy are given in [19-21]. More recently, the extended discrete KP and the algebraic structures of the (non-)isospectral flows of the dKP hierarchy were investigated in [22, 23]. Note that there exists another form of the dKP hierarchy [24, 25] defined by the shift operator Γ, and some interesting results including the vertex operator, the Bäcklund transformation for this operator, have already been obtained. An advantage of using the operator Δ instead of the operator Γ is that we can use Dickey's convenient methods. Another advantage is that the definition of the tau function of the dKP hierarchy in the form of Δ has a strong connection with the tau function of the KP hierarchy. It is useful for our study. This study concentrates on the symmetries of the dKP hierarchy. Through infinitesimal operators, we introduce two kinds of symmetries, Sato's Bäcklund transformations and additional symmetries, for the dKP hierarchy. And we prove that they are indeed symmetries. In addition, we establish the ASvM formula which demonstrates the equivalence of these two kinds of symmetries. Based on that we obtain the ASvM formula in the form of tau function.

The organization of the paper is as follows. In section 2, we give a brief description of the discrete KP hierarchy and prove some useful identities of the discrete pseudo-difference operators. In section 3, we introduce Sato's Bäcklund transformation for the dKP hierarchy through vertex operators and prove that they indeed define symmetries of the dKP hierarchy. In section 4, we introduce the additional symmetries for dKP and establish the ASvM formula. In section 5, we find the action of additional symmetry flows on the tau functions based on the ASvM formula developed in section 4. Section 6 is devoted to conclusions and discussion.

2. The discrete KP and difference operators

To be self-contained, we give a brief introduction to the dKP hierarchy based on a detailed research in [20].

Let F be an associative ring of functions which include a discrete variable $n \in \mathbb{Z}$ and infinite time variables $t_{i} \in \mathbb{R}$:

$$
F=\left\{f(n)=f\left(n, t_{1}, t_{2}, \ldots, t_{j}, \ldots\right) ; n \in \mathbb{Z}, t_{i} \in \mathbb{R}\right\} .
$$

We denote the shift operator and the difference operator by Γ and Δ, respectively. Their actions on F are as follows:

$$
\Gamma f(n)=f(n+1)
$$

and

$$
\Delta f(n)=f(n+1)-f(n)=(\Gamma-I) f(n)
$$

where I is the identity operator. If we consider a function $f(n)$ as an operator whose action on $g(n) \in F$ is $f(n) g(n)$, we can infer the following identity about multiplication of function operators and difference operators. That is, for any $j \in \mathbb{Z}$
$\Delta^{j} \circ f=\sum_{i=0}^{\infty}\binom{j}{i}\left(\Delta^{i} f\right)(n+j-i) \Delta^{j-i}, \quad\binom{j}{i}=\frac{j(j-1) \cdots(j-i+1)}{i!}$.
Here, the multiplication is denoted by ' 0 '. If the function operators are located on the the left-hand side, we omit ' \circ '. So with (2.1) we can obtain an associative ring $F(\Delta)$ of formal pseudo difference operators, which includes two operations ' + ' and ' 0 ':

$$
F(\Delta)=\left\{R(n)=\sum_{j=-\infty}^{d} f_{j}(n) \Delta^{j}, f_{j}(n) \in F, n \in \mathbb{Z}\right\}
$$

The ring F includes two subrings which are $F_{+}(\triangle)=\left\{R_{+}=\sum_{j=0}^{d} f_{j}(n) \triangle^{j}\right\}$, the ring of deference operators and $F_{-}(\Delta)=\left\{R_{-}=\sum_{j=-\infty}^{-1} f_{j}(n) \Delta^{j}\right\}$, the ring of Volterra operators.

We can also define the adjoint operator to Δ which is denoted by Δ^{*}. Its action on F is

$$
\Delta^{*} f(n)=\left(\Gamma^{-1}-I\right) f(n)=f(n-1)-f(n)
$$

where $\Gamma^{-1} f(n)=f(n-1)$. The corresponding identity about multiplication ' \circ ' is

$$
\Delta^{* j} \circ f=\sum_{i=0}^{\infty}\binom{j}{i}\left(\Delta^{* i} f\right)(n+i-j) \Delta^{* j-i}
$$

Then we also obtain the adjoint ring $F\left(\Delta^{*}\right)$ to $F(\Delta)$. The formal adjoint to $R \in F(\Delta)$ is $R^{*} \in F\left(\Delta^{*}\right)$ which is defined by $R^{*}=\sum_{j=-\infty}^{d} \Delta^{* j} \circ f_{j}(n)$. Here, the $*$ operation satisfies $(F \circ G)^{*}=G^{*} \circ F^{*}$ for two operators and $f(n)^{*}=f(n)$ for a function. If we consider $R(n)$ as a series in \triangle, we can define the operation of taking residue on $F(\triangle)$, that is res ${ }_{\triangle} R=f_{-1}(n)$. Then between the residue on $R(n)$ and the residue on a common series in z, there is a useful identity [20]: for $X, Y \in F(\triangle)$,
$\operatorname{res}_{z}\left(X(n)(1+z)^{n} \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right)\right)\left(Y^{*}(n-1)(1+z)^{-n} \exp \left(-\sum_{i=1}^{\infty} t_{i} z^{i}\right)\right)=\operatorname{res}_{\triangle} X Y$.

Let L be a general first-order pseudo difference operator:

$$
\begin{equation*}
L=L(n)=\Delta+\sum_{j=0}^{\infty} f_{j}(n) \Delta^{-j} \tag{2.3}
\end{equation*}
$$

The discrete KP hierarchy [20] can be expressed as

$$
\begin{equation*}
\frac{\partial L}{\partial t_{i}}=\left[\left(L^{i}\right)_{+}, L\right] \tag{2.4}
\end{equation*}
$$

Comparing the powers of Δ on both sides, we can obtain a family of evolution equations in functions $f_{i}(n)$. Define the dressing operator

$$
W(n ; t)=1+\sum_{j=1}^{\infty} w_{j}(n ; t) \Delta^{-j}
$$

which satisfies

$$
\begin{equation*}
L=W \circ \Delta \circ W^{-1} \tag{2.5}
\end{equation*}
$$

Then the Sato equation in the operator W

$$
\begin{equation*}
\frac{\partial W}{\partial t_{i}}=\left(L^{i}\right)_{-} \circ W \tag{2.6}
\end{equation*}
$$

is equivalent to the dKP equation (2.4). The dKP hierarchy can also be expressed as the following equations equivalently:

$$
\begin{equation*}
L^{k} w=z^{k} w \quad \text { and } \quad \partial_{t_{m}} w=L_{+}^{m} w \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(L^{*}(n-1)\right)^{k} w^{*}=z^{k} w^{*} \quad \text { and } \quad \partial_{t_{m}} w^{*}=-\left(L^{*}(n-1)\right)_{+}^{m} w^{*} \tag{2.8}
\end{equation*}
$$

Note that here (2.8) is different from the continuous case of the KP hierarchy. Using the dressing operator W, we can give a kind of form solutions for the above equations which are called Baker or wavefunctions $w(n ; t, z)$ and adjoint Baker or wavefunctions $w^{*}(n ; t, z)$:

$$
\begin{align*}
w(n ; t, z) & =W(n ; t)(1+z)^{n} \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right) \\
& =\left(1+\frac{w_{1}(n ; t)}{z}+\frac{w_{2}(n ; t)}{z^{2}}+\cdots\right)(1+z)^{n} \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right) \tag{2.9}
\end{align*}
$$

and

$$
\begin{align*}
w^{*}(n ; t, z) & =\left(W^{-1}(n-1 ; t)\right)^{*}(1+z)^{-n} \exp \left(\sum_{i=1}^{\infty}-t_{i} z^{i}\right) \\
& =\left(1+\frac{w_{1}^{*}(n ; t)}{z}+\frac{w_{2}^{*}(n ; t)}{z^{2}}+\cdots\right)(1+z)^{-n} \exp \left(\sum_{i=1}^{\infty}-t_{i} z^{i}\right) \tag{2.10}
\end{align*}
$$

Considering these and using Sato equation (2.6), we can verify that (2.7) and (2.8) hold. Wavefunctions and adjoint wavefunctions satisfy the following bilinear identity and the corresponding inverse.

Proposition 2.1 ([20]). For any $j \geqslant 0$ and for any multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ where $\partial^{\alpha}=\partial_{t_{1}}^{\alpha_{1}} \partial_{t_{2}}^{\alpha_{2}} \cdots \partial_{t_{k}}^{\alpha_{k}}$ and $\alpha_{k} \geqslant 0$,

$$
\begin{equation*}
\operatorname{res}_{z}\left(\Delta^{j} \partial^{\alpha} w(n ; t, z)\right) w^{*}(n ; t, z)=0 \tag{2.11}
\end{equation*}
$$

Correspondingly, given two formal series

$$
\begin{align*}
w(n ; t, z) & =(1+z)^{n}\left(1+\frac{w_{1}(n ; t)}{z}+\frac{w_{2}(n ; t)}{z^{2}}+\cdots\right) \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right) \\
& =z^{n}\left(1+O\left(z^{-1}\right)\right) \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right) \tag{2.12}
\end{align*}
$$

and

$$
\begin{align*}
w^{*}(n ; t, z) & =(1+z)^{-n}\left(1+\frac{w_{1}^{*}(n ; t)}{z}+\frac{w_{2}^{*}(n ; t)}{z^{2}}+\cdots\right) \exp \left(-\sum_{i=1}^{\infty} t_{i} z^{i}\right) \\
& =z^{-n}\left(1+O\left(z^{-1}\right)\right) \exp \left(-\sum_{i=1}^{\infty} t_{i} z^{i}\right) \tag{2.13}
\end{align*}
$$

satisfying the above bilinear identity (2.11), $w(n ; t, z)$ and $w^{*}(n ; t, z)$ are necessarily the wavefunctions and the adjoint wavefunctions of the dKP hierarchy, respectively.

A dKP hierarchy is equivalent to a single function, the tau function $\tau_{\Delta}=\tau(n ; t)$ [20], which means that all functions $w_{i}(n)$ in the dressing operator W can be generated by a single function, the tau function. That is

$$
\begin{equation*}
w(n ; t, z)=\frac{\tau\left(n ; t-\left[z^{-1}\right]\right)}{\tau(n ; t)}(1+z)^{n} \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{*}(n ; t, z)=\frac{\tau\left(n ; t+\left[z^{-1}\right]\right)}{\tau(n ; t)}(1+z)^{-n} \exp \left(\sum_{i=1}^{\infty}-t_{i} z^{i}\right) \tag{2.15}
\end{equation*}
$$

where $[z]=\left(z, \frac{z^{2}}{2}, \frac{z^{3}}{3}, \ldots\right)$. And further all functions $f_{i}(n)$ in the operator L can be generated by the tau function too [21]. Here introduce $G(z)$ and $G^{*}(z)$ operators, whose actions on functions are $G_{t}(z) f(t)=f\left(t-\left[z^{-1}\right]\right)$ and $G_{t^{\prime}}^{*}(z) f\left(t^{\prime}\right)=f\left(t^{\prime}+\left[z^{-1}\right]\right)$, respectively.

There is a useful tool given by Dickey.
Proposition 2.2 ([8]). If

$$
f(z)=\sum_{-\infty}^{\infty} a_{i}(\zeta) z^{-i}
$$

then

$$
\begin{equation*}
\operatorname{res}_{z}\left(\left(\zeta^{-1}\left(1-\frac{z}{\zeta}\right)^{-1}+z^{-1}\left(1-\frac{\zeta}{z}\right)^{-1}\right) f(z)\right)=f(\zeta) \tag{2.16}
\end{equation*}
$$

where $\left(1-\frac{z}{\zeta}\right)^{-1}$ is understood as a series in ζ^{-1} and $\left(1-\frac{\zeta}{z}\right)^{-1}$ is a series in z^{-1}.
Now we prove a useful property for the difference operators.
Lemma 2.3. Let $R \in F(\Delta)$; then

$$
\begin{equation*}
R(n)_{-}=\sum_{i=1}^{\infty} \Delta^{-i} \circ \operatorname{res}_{\Delta}\left(\Delta^{i-1} \circ R(n+1)\right) \tag{2.17}
\end{equation*}
$$

Proof. Note that $R(n)$ has another expression:

$$
\begin{equation*}
R(n)=\sum_{i=-\infty}^{d} f_{i}(n) \Delta^{i}=\sum_{i=-\infty}^{d} \Delta^{i} \circ g_{i}(n) \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
R(n)_{-}=\sum_{i=-\infty}^{-1} f_{i}(n) \Delta^{i}=\sum_{i=-\infty}^{-1} \Delta^{i} \circ g_{i}(n) \tag{2.19}
\end{equation*}
$$

Taking residue on both sides of (2.18),

$$
\begin{equation*}
\operatorname{res}_{\Delta} \sum_{i=-\infty}^{-1} f_{i}(n) \Delta^{i}=f_{-1}(n)=\operatorname{res}_{\Delta} \sum_{i=-\infty}^{-1} \Delta^{i} \circ g_{i}(n)=g_{-1}(n-1) \tag{2.20}
\end{equation*}
$$

Here we use the second expression of $R(n)$ to prove identity (2.17). On the right-hand side of (2.17), res $\Delta_{\Delta} \Delta^{i-1} \circ R(n+1)_{+}=0$; then we only need to consider the contribution of $R_{-}(n+1)$. On the other hand, due to the linear property of the operations res ${ }_{\Delta}$ and Δ, we just need to
consider a general entry in $R_{-}(n+1)$. Without loss of any generality take the entry in the form of $\Delta^{-k} \circ g_{-k}(n+1)$ for any $k \in \mathbb{Z}_{+}$. So we have

$$
\begin{equation*}
\sum_{i=1}^{\infty} \Delta^{-i} \circ \operatorname{res}_{\Delta}\left(\Delta^{i-1} \circ \Delta^{-k} \circ g_{-k}(n+1)\right)=\Delta^{-k} \circ \operatorname{res}_{\Delta} \Delta^{-1} \circ g_{-k}(n+1)=\Delta^{-k} g_{-k}(n) \tag{2.21}
\end{equation*}
$$

Combining with the linear property, the lemma is proved.
The special case of the above lemma is that for $n=1$

$$
\begin{equation*}
f(n) \circ \Delta^{-1}=\sum_{i \geqslant 0} \Delta^{-i-1} \circ \Delta^{i}(f(n+1)) \tag{2.22}
\end{equation*}
$$

This result has already been proved in [21].

3. Vertex operators and Sato's Bäcklund transformations

In this section, we consider a kind of symmetries for the dKP hierarchy which are called Sato's Bäcklund transformations. Since dKP can be generated by tau functions, we just need to consider the symmetries on τ_{Δ}. By the definition of the Lie algebra we need to find the infinitesimal operators $X(n ; \lambda, \mu)$ of these symmetries which act on tau functions. And through solving the equations $\frac{\partial \tau_{\Delta}}{\partial t_{\lambda, \mu}^{*}}=X(n ; \lambda, \mu) \tau_{\Delta}$ where $t_{\lambda, \mu}$ are the variables about these symmetries, we can obtain for each value of $t_{\lambda, \mu}$ a new tau function. That is, we obtain the symmetries marked by $t_{\lambda, \mu}$.

Define the infinitesimal operators $X(n ; \lambda, \mu)$ on the space of tau functions τ_{Δ} as follows:

$$
\begin{equation*}
X(n ; \lambda, \mu)=\left(\frac{1+\mu}{1+\lambda}\right)^{n}: \exp \sum_{-\infty}^{\infty}\left(\frac{P_{i}}{\mathrm{i} \lambda^{i}}-\frac{P_{i}}{\mathrm{i} \mu^{i}}\right):, \tag{3.1}
\end{equation*}
$$

where

$$
P_{i}= \begin{cases}\partial_{i}, & i>0 \\ |i| t_{|i|}, & i \leqslant 0\end{cases}
$$

and the symbol of normal ordering ' $::$ ' means that all P_{i} with negative i should be placed on the left of positive ones. Note that $X(n ; \lambda, \mu)$ are vertex operators. By direct computation, the action of $X(n ; t, z)$ on τ_{Δ} functions is
$X(n ; \lambda, \mu) \tau(n ; t)=\left(\frac{1+\mu}{1+\lambda}\right)^{n} \exp \left(\sum_{1}^{\infty} t_{i}\left(\mu^{i}-\lambda^{i}\right)\right) G^{*}(\lambda) G(\mu) \tau(n ; t)$.
Now, we prove that $X(n ; \lambda, \mu)$ are indeed the infinitesimal operators of the symmetries of Sato's Bäcklund transformations, which is the following theorem.

Theorem 3.1. If ϵ is infinitesimal and $\tau(n ; t)$ is a tau function of the dKP hierarchy, $\tilde{\tau}(n ; t)=\tau(n ; t)+\epsilon X(n ; \lambda, \mu) \tau(n ; t)$ is also a tau function of the dKP hierarchy.

Proof. Let

$$
\begin{equation*}
\tilde{w}(n ; t, z)=\frac{G(z)(\tau(n ; t)+\epsilon X(n ; \lambda, \mu) \tau(n ; t))}{\tau(n ; t)+\epsilon X(n ; t, z) \tau(n ; t)}(1+z)^{n} \exp \sum_{i=1}^{\infty} t_{i} z^{i} \tag{3.3}
\end{equation*}
$$

and
$\tilde{w}^{*}\left(n ; t^{\prime}, z\right)=\frac{G^{*}(z)\left(\tau\left(n ; t^{\prime}\right)+\epsilon X(n ; \lambda, \mu) \tau\left(n ; t^{\prime}\right)\right)}{\tau\left(n ; t^{\prime}\right)+\epsilon X\left(n ; t^{\prime}, z\right) \tau\left(n ; t^{\prime}\right)}(1+z)^{-n} \exp \sum_{i=1}^{\infty}-t_{i}^{\prime} z^{i}$
be functions generated by $\tilde{\tau}(n ; t)$. If we want to prove that $\tilde{\tau}(n ; t)$ is a new tau function generated by $X(n ; \lambda, \mu)$, we just need to verify that $\tilde{w}(n ; t, z)$ and $\tilde{w}^{*}(n ; t, z)$ are the wavefunction and the adjoint wavefunction of the dKP hierarchy, respectively. Based on the second part of proposition 2.1, we only need to verify for $j \geqslant 0$:

$$
\operatorname{res}_{z}\left(\Delta^{j} \tilde{w}(n ; t, z) \tilde{w}^{*}\left(n ; t^{\prime}, z\right)\right)=0
$$

Further it is equivalent to verify for $m \geqslant n$

$$
\begin{equation*}
\operatorname{res}_{z}\left(\tilde{w}(m ; t, z) \tilde{w}^{*}\left(n ; t^{\prime}, z\right)\right)=0 \tag{3.5}
\end{equation*}
$$

Substitute (3.3) into the above equation. Note that $\tau(n ; t)$ is a tau function of dKP and it satisfies

$$
\begin{equation*}
\operatorname{res}_{z}(G(z) \tau(m ; t))\left(G^{*}(z) \tau(n ; t)\right)(1+z)^{m-n} \exp \sum_{1=1}^{\infty}\left(t_{i}-t_{i}^{\prime}\right) z^{i}=0 \tag{3.6}
\end{equation*}
$$

So by the definition of $O(\epsilon)$, we just need to verify that the following identity holds for $m \geqslant n$:

$$
\begin{align*}
& \operatorname{res}_{z}\left(G_{t}(z) X(m ; \lambda, \mu) \tau(m, t)\right)\left(G_{t^{\prime}}^{*}(z) \tau\left(n ; t^{\prime}\right)\right)(1+z)^{m-n} \exp \sum_{1=1}^{\infty}\left(t_{i}-t_{i}^{\prime}\right) z^{i} \\
& \quad+\operatorname{res}_{z}\left(G_{t}(z) \tau(m ; t)\right)\left(G_{t^{\prime}}^{*}(z) X^{\prime}(n ; \lambda, \mu) \tau\left(n ; t^{\prime}\right)(1+z)^{m-n} \exp \sum_{1=1}^{\infty}\left(t_{i}-t_{i}^{\prime}\right) z^{i}=0\right. \tag{3.7}
\end{align*}
$$

where $X^{\prime}(n ; \lambda, \mu)$ denotes $X(n ; \lambda, \mu)$ with t replaced by t^{\prime}. Substitute (3.2) into (3.7), and the first item of the above equation is

$$
\begin{align*}
& \operatorname{res}_{z} G_{t}(z) G_{t}^{*}(\lambda) G_{t}(\mu) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(z) \tau\left(n ; t^{\prime}\right) \\
& \cdot(1+z)^{m-n}\left(\frac{1+\mu}{1+\lambda}\right)^{m} \exp \sum_{1=1}^{\infty}\left(t_{i} z^{i}-t_{i}^{\prime} z^{i}-t_{i} \lambda^{i}+t_{i} \mu^{i}\right) \cdot \frac{1-\mu / z}{1-\lambda / z} \tag{3.8}
\end{align*}
$$

On the other hand, by (2.11), we have

$$
\begin{equation*}
\operatorname{res}_{z} G_{t}(z) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(z) \tau\left(n ; t^{\prime}\right)(1+z)^{m-n} \exp \sum_{1=1}^{\infty}\left(t_{i}-t_{i}^{\prime}\right) z^{i}=0 \tag{3.9}
\end{equation*}
$$

Let $G_{t}^{*}(\lambda) G_{t}(\mu)$ act on both sides of the above identity; then we obtain

$$
\begin{equation*}
\operatorname{res}_{z} G_{t}^{*}(\lambda) G_{t}(\mu) G_{t}(z) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(z) \tau\left(n ; t^{\prime}\right)(1+z)^{m-n} \exp \sum_{1=1}^{\infty}\left(t_{i}-t_{i}^{\prime}\right) z^{i} \cdot \frac{1-z / \mu}{1-z / \lambda}=0 \tag{3.10}
\end{equation*}
$$

Multiply the above by

$$
\frac{\mu}{\lambda} \exp \sum_{1=1}^{\infty}\left(t_{i} \mu^{i}-t_{i} \lambda^{i}\right) \cdot\left(\frac{1+\mu}{1+\lambda}\right)^{m}
$$

and subtract it from (3.8); then (3.8) becomes

$$
\begin{align*}
& \operatorname{res}_{z} G_{t}(z) G_{t}^{*}(\lambda) G_{t}(\mu) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(z) \tau\left(n ; t^{\prime}\right)(1+z)^{m-n}\left(\frac{1+\mu}{1+\lambda}\right)^{m} \\
& \cdot \exp \sum_{1=1}^{\infty}\left(t_{i} z^{i}-t_{i}^{\prime} z^{i}-t_{i} \lambda^{i}+t_{i} \mu^{i}\right) \cdot(z-\mu)\left(\frac{1}{z(1-\lambda / z)}+\frac{1}{\lambda(1-z / \lambda)}\right) . \tag{3.11}
\end{align*}
$$

Using proposition 2.2, the above expression which is the first item of (3.7) equals
$\operatorname{res}_{z} G_{t}(\mu) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(\lambda) \tau\left(n ; t^{\prime}\right) \frac{(1+\mu)^{m}}{(1+\lambda)^{n}} \exp \sum_{1=1}^{\infty}\left(t_{i} \mu^{i}-t_{i}^{\prime} \lambda^{i}\right) \cdot(\lambda-\mu)$.
Similarly, the second item of (3.7) equals

$$
\begin{align*}
& \operatorname{res}_{z} G_{t}(z) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(z) G_{t^{\prime}}^{*}(\lambda) G_{t^{\prime}}(\mu) \tau\left(n ; t^{\prime}\right) \\
& \cdot(1+z)^{m-n}\left(\frac{1+\mu}{1+\lambda}\right)^{n} \exp \sum_{1=1}^{\infty}\left(t_{i} z^{i}-t_{i}^{\prime} z^{i}-t_{i}^{\prime} \lambda^{i}+t_{i}^{\prime} \mu^{i}\right) \cdot \frac{1-\lambda / z}{1-\mu / z} \tag{3.13}
\end{align*}
$$

To get (3.12) $+(3.13)=0$, we further simplify the above expression. So let $G_{t^{\prime}}^{*}(\lambda) G_{t^{\prime}}(\mu)$ act on (3.9); then we have
$\operatorname{res}_{z} G_{t}(z) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(z) G_{t^{\prime}}^{*}(\lambda) G_{t^{\prime}}(\mu) \tau\left(n ; t^{\prime}\right)(1+z)^{m-n} \exp \sum_{1=1}^{\infty}\left(t_{i}-t_{i}^{\prime}\right) z^{i} \cdot \frac{1-z / \lambda}{1-z / \mu}=0$.

Multiply the above by

$$
\frac{\lambda}{\mu} \exp \sum_{1=1}^{\infty} t_{i}^{\prime} \mu^{i}-t_{i}^{\prime} \lambda^{i} \cdot\left(\frac{1+\mu}{1+\lambda}\right)^{n}
$$

and subtract it from (3.13); then (3.13) becomes

$$
\begin{align*}
& \operatorname{res}_{z} G_{t}(z) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(\lambda) G_{t^{\prime}}(\mu) G_{t^{\prime}}^{*}(z) \tau\left(n ; t^{\prime}\right)(1+z)^{m-n}\left(\frac{1+\mu}{1+\lambda}\right)^{n} \\
& \cdot \exp \sum_{1=1}^{\infty}\left(t_{i} z^{i}-t_{i}^{\prime} z^{i}-t_{i}^{\prime} \lambda^{i}+t_{i}^{\prime} \mu^{i}\right) \cdot(z-\lambda)\left(\frac{1}{z(1-\mu / z)}+\frac{1}{\mu(1-z / \mu)}\right) \tag{3.15}
\end{align*}
$$

So based on proposition 2.2, the above expression which is the second item of (3.7) becomes $\operatorname{res}_{z} G_{t}(\mu) \tau(m ; t) \cdot G_{t^{\prime}}^{*}(\lambda) \tau\left(n ; t^{\prime}\right) \frac{(1+\mu)^{m}}{(1+\lambda)^{n}} \exp \sum_{1=1}^{\infty}\left(t_{i} \mu^{i}-t_{i}^{\prime} \lambda^{i}\right) \cdot(\mu-\lambda)$.
So (3.16) cancels (3.12) and the identity of (3.7) holds. Then $\tilde{\tau}(n ; t)$ is a new tau function of the dKP hierarchy, which means that $X(n ; \lambda, \mu)$ are indeed infinitesimal operators on the space of $\tau(n ; t)$ functions of dKP.

Now we introduce the Fay identity and the difference Fay identity for the dKP hierarchy.
Lemma 3.2. The tau function of the dKP hierarchy $\tau(n ; t)$ satisfies the following Fay identity:

$$
\begin{equation*}
\sum_{\left(s_{1}, s_{2}, s_{3}\right)}\left(s_{0}-s_{1}\right)\left(s_{2}-s_{3}\right) \tau\left(n ; t+\left[s_{0}\right]+\left[s_{1}\right]\right) \tau\left(n ; t+\left[s_{2}\right]+\left[s_{3}\right]\right)=0 \tag{3.17}
\end{equation*}
$$

where $\left(s_{1}, s_{2}, s_{3}\right)$ means the cyclic permutation of s_{1}, s_{2} and s_{3}.

Proof. Note that for a fixed $n, \tau(n ; t)$ is also a tau function of KP. So it also satisfies the Fay identity of KP's, which infers (3.17).

Note that there is a connection between $\tau(t)$ functions of the KP hierarchy and $\tau(n ; t)$ functions of the dKP hierarchy, that is [20]

$$
\begin{equation*}
\tau_{\Delta}=\tau(n ; t)=\tau\left(t_{1}+n, t_{2}-\frac{n}{2}, t_{3}+\frac{n}{3}, \ldots\right) . \tag{3.18}
\end{equation*}
$$

So we can obtain the following difference Fay identity.
Lemma 3.3. The tau functions $\tau(n ; t)$ of the $d K P$ hierarchy satisfy the following difference Fay identity.

$$
\begin{align*}
\left(s_{3}^{-1}+1\right) & \Delta\left(\frac{\tau\left(n ; t+\left[s_{1}\right]-\left[s_{3}\right]\right.}{\tau(n ; t)}\right) \\
& =\left(s_{3}^{-1}-s_{1}^{-1}\right) \frac{\tau\left(n ; t-\left[s_{3}^{-1}\right]\right) \cdot \tau\left(n+1 ; t+\left[s_{1}\right]\right)-\tau\left(n ; t+\left[s_{1}\right]-\left[s_{3}\right]\right) \tau(n+1 ; t)}{\tau(n ; t) \tau(n+1 ; t)} \tag{3.19}
\end{align*}
$$

Proof. Consider the Fay identity (3.17). Let $s_{0}=0$; divide it by $s_{1} s_{2} s_{3}$ and shift the variable $t \rightarrow t-\left[s_{2}\right]-\left[s_{3}\right]$. Then we have

$$
\begin{align*}
\left(s_{3}^{-1}-s_{2}^{-1}\right) \tau & \left(n ; t+\left[s_{1}\right]-\left[s_{2}\right]-\left[s_{3}\right]\right) \tau(n ; t) \\
& +\left(s_{1}^{-1}-s_{3}^{-1}\right) \tau\left(n ; t-\left[s_{3}\right]\right) \tau\left(n ; t+\left[s_{1}\right]-\left[s_{2}\right]\right) \\
& +\left(s_{2}^{-1}-s_{1}^{-1}\right) \tau\left(n ; t-\left[s_{2}\right]\right) \tau\left(n ; t+\left[s_{1}\right]-\left[s_{3}\right]\right) \\
= & 0 . \tag{3.20}
\end{align*}
$$

On the other hand, based on (3.18) we have the following connection:

$$
\begin{equation*}
\tau(n+1, t)=\tau(n ; t-[-1]) \tag{3.21}
\end{equation*}
$$

Then let $s_{2}=-1$ in (3.20); use the above connection and we obtain the difference Fay identity (3.19).

4. Additional symmetries and the ASvM formula

Now, we consider another family of symmetries for the dKP hierarchy which are called the additional symmetries. Similar to the case of the KP hierarchy [6, 11, 12], first define

$$
\begin{equation*}
\Gamma_{\triangle}=\sum_{i=1}^{\infty}\left(\mathrm{i} t_{i} \Delta^{i-1}+(-1)^{i-1} n \Delta^{i-1}\right) \tag{4.1}
\end{equation*}
$$

which has the following property.

Lemma 4.1.

$$
\begin{equation*}
\left[\partial_{t_{k}}-\Delta^{k}, \Gamma_{\Delta}\right]=0 \tag{4.2}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
{\left[\partial_{t_{k}}-\Delta^{k}, \Gamma_{\Delta}\right] } & =\left[\partial_{k}, \sum_{i=1}^{\infty} \mathrm{i} t_{i} \Delta^{i-1}\right]-\left[\Delta^{k}, \sum_{i=1}^{\infty}(-1)^{i-1} n \Delta^{i-1}\right] \\
& =k \Delta^{k-1}-\sum_{i=1}^{\infty}(-1)^{i-1}\left((n+k) \Delta^{k}+k \Delta^{k-1}\right) \Delta^{i-1}+\sum_{i=1}^{\infty}(-1)^{i-1} n \Delta^{k+i-1}
\end{aligned}
$$

$$
\begin{align*}
& =k \Delta^{k-1}-\sum_{i=1}^{\infty}(-1)^{i-1} k \Delta^{k+i-1}-\sum_{i=1}^{\infty}(-1)^{i-1} k \Delta^{k+i-2} \\
& =k \Delta^{k-1}-k \triangle^{k-1} \\
& =0 \tag{4.3}
\end{align*}
$$

This property plays an important role in the definition of additional symmetries. In addressing (4.2), we also define another operator

$$
\begin{equation*}
M_{\triangle}=W \circ \Gamma_{\Delta} \circ W^{-1} \tag{4.4}
\end{equation*}
$$

These two operators are crucial blocks to construct the additional symmetries for the dKP hierarchy. Now, we demonstrate some properties about them. With respect to dKP flows (2.4), the evolution equation of M_{Δ} is

$$
\begin{equation*}
\partial_{t_{k}} M_{\triangle}=\left[L_{+}^{k}, M_{\Delta}\right] . \tag{4.5}
\end{equation*}
$$

More generally,

$$
\begin{equation*}
\partial_{t_{k}}\left(M_{\Delta}^{m} L^{l}\right)=\left[L_{+}^{k}, M_{\Delta}^{m} L^{l}\right] . \tag{4.6}
\end{equation*}
$$

The action of M_{\triangle} on wavefunctions is calculated by

$$
\begin{align*}
M_{\Delta} w= & W \Gamma_{\Delta}\left((1+z)^{n} \exp \sum_{i=1}^{\infty}\left(t_{i} z^{i}\right)\right) \\
= & W\left(\sum_{i=1}^{\infty}\left(t_{i} i z^{i}(1+z)^{n} \exp \sum_{j=1}^{\infty} t_{j} z^{j}+(-1)^{i-1} n z^{i-1}(1+z)^{n} \exp \sum_{j=1}^{\infty} t_{j} z^{j}\right)\right) \\
= & W\left((1+z)^{n}\left(\partial_{z}\left(\exp \sum_{i=1}^{\infty} t_{j} z^{j}\right)\right)+\left(\partial_{z}\left((1+z)^{n}\right)\right) \exp \sum_{i=1}^{\infty} t_{j} z^{j}\right) \\
& \left(\text { with }(1+z)^{-1}=\sum_{i=0}^{\infty}(-1)^{i} z^{i}\right) \\
= & W\left(\partial_{z}\left((1+z)^{n} \exp \sum_{i=1}^{\infty} t_{j} z^{j}\right)\right) \\
= & \partial_{z} w . \tag{4.7}
\end{align*}
$$

So together with $L w=z w$, we have more general formulas

$$
L^{l} M_{\Delta}^{m} w=\partial_{z}^{m} z^{l} w, \quad M_{\Delta}^{m} L^{l} w=z^{l} \partial_{z}^{m} w
$$

Moreover, a straightforward calculation can infer the following commutation relations:

$$
\begin{equation*}
\left[\Delta, \Gamma_{\Delta}\right]=1 \quad \text { and } \quad\left[L, M_{\Delta}\right]=1 \tag{4.8}
\end{equation*}
$$

With the above calculations on the operators Γ_{Δ} and M_{Δ}, we can now define the additional symmetries for the dKP hierarchy. For every pair of m, l, we define additional flows of the dKP hierarchy as follows:

$$
\begin{equation*}
\partial_{m l}^{*} W=-\left(M_{\Delta}^{m} L^{l}\right)_{-} \circ W \tag{4.9}
\end{equation*}
$$

where $\partial_{m l}^{*}$ symbolizes a derivative with respect to an additional variable $t_{m l}^{*}$. Together with the definition of L and M, the action of additional flows in (4.9) implies that the action of additional flows on the operator L is

$$
\begin{equation*}
\partial_{m l}^{*} L=-\left[\left(M_{\Delta}^{m} L^{l}\right)_{-}, L\right] \tag{4.10}
\end{equation*}
$$

and that on the operator M is

$$
\begin{equation*}
\partial_{m l}^{*} M_{\Delta}=-\left[\left(M_{\Delta}^{m} L^{l}\right)_{-}, M_{\Delta}\right] \tag{4.11}
\end{equation*}
$$

Combining both of them, we obtain a general form, that is

$$
\begin{equation*}
\partial_{m l}^{*} M_{\Delta}^{n} L^{k}=-\left[\left(M_{\Delta}^{m} L^{l}\right)_{-}, M_{\Delta}^{n} L^{k}\right] \tag{4.12}
\end{equation*}
$$

for any $k \in \mathbb{Z}$ and $n \in \mathbb{Z}$.
Now we calculate commutation relations between additional flows $\partial_{m, l}^{*}$ and original flows $\partial_{t_{k}}$ of the dKP hierarchy.

Lemma 4.2. The flows of $\partial_{m, l}^{*}$ commute with all flows of $\partial_{t_{k}}$ of the $d K P$ hierarchy.
Proof. According to the action of $\partial_{t_{k}}$ and $\partial_{m, l}^{*}$ on the Sato operator W, we have

$$
\begin{align*}
{\left[\partial_{m l}^{*}, \partial_{t_{k}}^{*}\right](W)=} & -\partial_{m l}^{*}\left(L_{-}^{k} \circ W\right)+\partial_{t_{k}}\left(\left(M_{\Delta}^{m} L^{l}\right)_{-} \circ W\right) \\
= & {\left[\left(M_{\Delta}^{m} L^{l}\right)_{-}, L^{k}\right]_{-} \circ W+L_{-}^{k} \circ\left(M_{\Delta}^{m} L^{l}\right)_{-} \circ W-\left(M_{\Delta}^{m} L^{l}\right)_{-} \circ L_{-}^{k} \circ W } \\
& +\left(M_{\Delta}^{m} \circ\left[L_{+}^{k}, L^{l}\right]\right)_{-} \circ W+\left(\left[L_{+}^{k}, M_{\Delta}^{m}\right] \circ L^{l}\right)_{-} \circ W \\
= & {\left[\left(M_{\Delta}^{m} L^{l}\right)_{-}, L^{k}\right]_{-} \circ W+\left[L_{+}^{k}, M_{\Delta}^{m} L^{l}\right]_{-} \circ W+\left[L_{-}^{k},\left(M_{\Delta}^{m} L^{l}\right)_{-}\right] \circ W } \\
= & 0 \tag{4.13}
\end{align*}
$$

Therefore, additional flows $\partial_{m l}^{*}$ commute with all dKP flows $\partial_{t_{k}}$.
Based on this lemma, if L satisfies the dKP hierarchy (2.4) and ϵ is infinitesimal, then $L+\epsilon \partial_{m l}^{*} L$ also satisfies the dKP hierarchy by the definition of $O(\epsilon)$:

$$
\begin{align*}
\frac{\partial\left(L+\epsilon \partial_{m l}^{*} L\right)}{\partial t_{i}} & =\left[L_{+}^{i}, L\right]+\epsilon \partial_{m l}^{*}\left[L_{+}^{i}, L\right] \\
& =\left[L_{+}^{i}+\epsilon\left(\partial_{m l}^{*} L^{i}\right)_{+}, L+\epsilon \partial_{m l}^{*} L\right] \\
& =\left[\left(L+\epsilon \partial_{m l}^{*} L\right)_{+}^{i}, L+\epsilon \partial_{m l}^{*} L\right] . \tag{4.14}
\end{align*}
$$

This means that the additional flows which are defined by the operators $\partial_{m l}^{*}$ indeed define symmetries of the dKP hierarchy. So it is called additional symmetry (flows) without any confusion. The operators $\partial_{m l}^{*}$ are infinitesimal operators of additional symmetries, and the symmetries are remarked by the variables $t_{m l}^{*}$. Note that, similar to the KP case, additional symmetry flows $\partial_{m, l}^{*}$ do not commute with each other. We will discuss about it in the next section.

Now there are two kinds of symmetries, additional symmetries and Sato Bäcklund transformations. They are not independent but equivalent. Through the connection between $\partial_{m l}^{*}$ and $X(n ; \lambda, \mu)$ which are the infinitesimal operators of these two symmetries, the ASvM formula demonstrates the equivalence of two symmetries. To obtain ASvM, we first combine the infinitesimal operators $\partial_{m l}^{*}$. In the space of wavefunctions, we can define the combined operator Y which is also an infinitesimal operator of additional symmetries as follows:

$$
\begin{equation*}
Y(n ; \lambda, \mu)=\sum_{m=0}^{\infty} \frac{(\mu-\lambda)^{m}}{m!} \sum_{l=-\infty}^{\infty} \lambda^{-l-m-1}\left(M_{\Delta}^{m} L^{m+l}\right)_{-} \tag{4.15}
\end{equation*}
$$

It has another expression.

Lemma 4.3.

$$
\begin{equation*}
Y(n ; \lambda, \mu)=w(n ; t, \mu) \circ \Delta^{-1} \circ w^{*}(n+1 ; t, \lambda) . \tag{4.16}
\end{equation*}
$$

Proof. By lemma 2.3 and identity (2.2), we have

$$
\begin{align*}
\left(M_{\Delta}^{m} L^{m+l}\right)_{-}= & \sum_{i=1}^{\infty} \Delta^{-i} \circ \operatorname{res}_{\Delta}\left(\Delta^{i-1} \circ M_{\Delta}^{m}(n+1) \circ W(n+1) \circ \Delta^{m+l} \circ W^{-1}(n+1)\right) \\
= & \sum_{i=1}^{\infty} \Delta^{-i} \circ \operatorname{res}_{z}\left(\left(\left(\Delta^{i-1} \circ M_{\Delta}^{m}(n+1) \circ W(n+1) \circ \Delta^{m+l}\right)\right.\right. \\
& \left.\left.\times\left((1+z)^{n+1} \exp \sum_{j=1}^{\infty} t_{j} z^{j}\right)\right) \cdot\left(\left(W^{*}\right)^{-1}(n)\left((1+z)^{-n-1} \exp \sum_{j=1}-t_{j} z^{j}\right)\right)\right) \\
= & \sum_{i=1}^{\infty} \Delta^{-i} \circ \operatorname{res}_{z}\left(z^{m+l} \cdot \Delta^{i-1}\left(M_{\Delta}^{m}(n+1) w(n+1, ; t, z)\right) \cdot w^{*}(n+1 ; t, z)\right) \\
= & \operatorname{res}_{z}\left(z^{m+l} \sum_{i=1}^{\infty} \Delta^{-i} \circ \Delta^{i-1}\left(\partial_{z}^{m} w(n+1 ; t, z)\right) \circ w^{*}(n+1 ; t, z)\right) \\
= & \operatorname{res}_{z}\left(z^{m+l}\left(\partial_{z}^{m} w(n ; t, z) \circ \Delta^{-1} \circ w^{*}(n+1 ; t, z)\right) .\right. \tag{4.17}
\end{align*}
$$

In the penultimate equality, (4.7) is used. Substitute (4.17) into the definition of Y and use proposition 2.2 ; then

$$
\begin{align*}
Y(n ; \lambda, \mu)= & \operatorname{res}_{z}\left(\left(\sum_{m=0}^{\infty} \sum_{l=-\infty}^{\infty} \frac{z^{m+l}}{\lambda^{m+l+1}} \cdot \frac{(\mu-\lambda)^{m}}{m!}\left(\partial_{z}^{m} w(n ; t, z)\right)\right) \circ \Delta^{-1} \circ w^{*}(n+1 ; t, z)\right) \\
= & \operatorname{res}_{z}\left(\left(\left(z^{-1}\left(1-\frac{\lambda}{z}\right)^{-1}+\lambda^{-1}\left(1-\frac{z}{\lambda}\right)^{-1}\right) \cdot \exp \left((\mu-\lambda) \partial_{z}\right) \cdot w(n ; t, z)\right)\right. \\
& \left.\circ \Delta^{-1} \circ w^{*}(n+1 ; t, z)\right) \\
= & \left(\exp \left((\mu-\lambda) \partial_{\lambda}\right) \cdot w(n ; t, \lambda)\right) \circ \Delta^{-1} \circ w^{*}(n+1 ; t, z) \\
= & w(n ; t, \mu) \circ \Delta^{-1} \circ w^{*}(n+1 ; t, \lambda) . \tag{4.18}
\end{align*}
$$

Now the ASvM formula for the dKP hierarchy, which sets up the connection between the Sato's Bäcklund transformations and additional symmetries, is given by the following theorem.

Theorem 4.4. The infinitesimal operator $X(n ; \lambda, \mu)$ has the following connection with the infinitesimal operator $Y(n ; \lambda, \mu)$ in the space of wavefunctions:

$$
\begin{equation*}
X(n ; \lambda, \mu) w(n ; t, z)=(\lambda-\mu) Y(n ; \lambda, \mu) w(n ; t, z), \tag{4.19}
\end{equation*}
$$

where the action of $X(n ; \lambda, \mu)$ on wavefunctions should be understood as generated by its action (3.3) on the $\tau(n ; t)$ function.

Proof. First, we calculate the action of $X(n ; \lambda, \mu)$ on the wavefunction. We begin with the analog in the KP hierarchy [8, 17]:

$$
\begin{align*}
X(\lambda, \mu) w(t, z) & =\exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right) X(\lambda, \mu) \frac{\tau\left(t-\left[z^{-1}\right]\right)}{\tau(t)} \\
& =\left(\frac{\lambda-\mu}{z-\lambda}\right) \exp \left(\sum_{i=1}^{\infty} t_{i}\left(z^{i}+\mu^{i}-\lambda^{i}\right)\right) \frac{\tau\left(t-\left[\mu^{-1}\right]\right) \tau\left(t-\left[z^{-1]}+\left[\lambda^{-1}\right]\right)\right.}{\tau^{2}(t)} . \tag{4.20}
\end{align*}
$$

Through a shift of variables

$$
\left(t_{1}, t_{2}, \ldots\right) \rightarrow\left(t_{1}+n, t_{2}-\frac{n}{2}, t_{3}+\frac{n}{3}, \ldots\right),
$$

we obtain

$$
\begin{align*}
X(n ; \lambda, \mu) w(n ; t, z)= & (1+z)^{n} \exp \left(\sum_{i=1}^{\infty} t_{i} z^{i}\right) X(n ; \lambda, \mu) \frac{\tau\left(n ; t-\left[z^{-1}\right]\right)}{\tau(n ; t)} \\
= & (1+z)^{n}\left(\frac{1+\mu}{1+\lambda}\right)^{n}\left(\frac{\lambda-\mu}{z-\lambda}\right) \exp \left(\sum_{i=1}^{\infty} t_{i}\left(z^{i}+\mu^{i}-\lambda^{i}\right)\right) \\
& \times \frac{\tau\left(n ; t-\left[\mu^{-1}\right]\right) \tau\left(n ; t-\left[z^{-1]}+\left[\lambda^{-1}\right]\right)\right.}{\tau^{2}(n ; t)}, \\
= & (\lambda-\mu) w(n ; t, \mu)\left(\frac{1+z}{1+\lambda}\right)^{n} \exp \left(\sum_{i=1}^{\infty} t_{i}\left(z^{i}-\lambda^{i}\right)\right)(z-\lambda)^{-1} \\
& \times \frac{\tau\left(n ; t-\left[z^{-1}\right]-\left[\lambda^{-1}\right]\right)}{\tau(n ; t)} . \tag{4.21}
\end{align*}
$$

Secondly, substituting Y given by (4.16) into (4.19), it becomes
$X(n ; \lambda, \mu) w(n ; t, z)=(\lambda-\mu) w(n ; t, \mu) \cdot \Delta^{-1} \cdot\left(w^{*}(n+1 ; t, \lambda) w(n ; t, z)\right)$.
Furthermore, substituting (4.21) into the above, it becomes

$$
\begin{gather*}
(\lambda-\mu) w(n ; t, \mu)\left(\frac{1+z}{1+\lambda}\right)^{n} \exp \left(\sum_{i=1}^{\infty} t_{i}\left(z^{i}-\lambda^{i}\right)\right)(z-\lambda)^{-1} \frac{\tau\left(n ; t-\left[z^{-1}\right]-\left[\lambda^{-1}\right]\right)}{\tau(n ; t)} \\
=(\lambda-\mu) w(n ; t, \mu) \cdot \Delta^{-1} \cdot\left(w^{*}(n+1 ; t, \lambda) w(n ; t, z)\right) . \tag{4.23}
\end{gather*}
$$

Divide both sides by $(\lambda-\mu) w(n ; t, \mu)$ and let the operator Δ act on it. Then what we need to prove is the following identity:

$$
\begin{align*}
\Delta\left(\left(\frac{1+z}{1+\lambda}\right)^{n}\right. & \left.\exp \left(\sum_{i=1}^{\infty} t_{i}\left(z^{i}-\lambda^{i}\right)\right)(z-\lambda)^{-1} \frac{\tau\left(n ; t-\left[z^{-1}\right]-\left[\lambda^{-1}\right]\right)}{\tau(n ; t)}\right) \\
= & \frac{\tau\left(n+1 ; t+\left[\lambda^{-1}\right]\right) \tau\left(n ; t-\left[z^{-1}\right]\right)}{\tau(n+1 ; t) \tau(n ; t)} \exp \left(\sum_{i=1}^{\infty} t_{i}\left(z^{i}-\lambda^{i}\right)\right) \cdot \frac{(1+z)^{n}}{(1+\lambda)^{n+1}}, \tag{4.24}
\end{align*}
$$

which also equals

$$
\begin{align*}
& (z-\lambda) \frac{\tau\left(n+1 ; t+\left[\lambda^{-1}\right]\right) \tau\left(n ; t-\left[z^{-1}\right]\right)}{\tau(n+1 ; t) \tau(n ; t)} \\
& \quad=(1+z) \frac{\tau\left(n+1 ; t-\left[z^{-1}\right]-\left[\lambda^{-1}\right]\right)}{\tau(n+1 ; t)}-(1+\lambda) \frac{\tau\left(n ; t-\left[z^{-1}\right]-\left[\lambda^{-1}\right]\right)}{\tau(n ; t)} . \tag{4.25}
\end{align*}
$$

The above identity holds because it is nothing but the difference Fay identity with $s_{1}=\lambda^{-1}$ and $s_{3}=z^{-1}$. So (4.19) holds.

5. Algebraic structure of additional symmetries for dKP

In this section we further concentrate on the algebraic structures of these symmetries and their action on tau functions and wavefunctions. The ASvM formula, in addition to constructing
the connection between Sato's Bäcklund transformations and additional symmetries, also constructs the connection between their algebraic structure.

First, we demonstrate the algebraic structure of $\partial_{m, l}^{*}$ acting on the operator L or W. By the definition of the additional symmetries of the dKP hierarchy in the previous sections, we obtain that it is the same as the corresponding algebraic structure of the KP hierarchy.

Theorem 5.1. For $m, k, h, l \in \mathbb{Z}$
$\left[\partial_{k, m+k}^{*}, \partial_{l, h+l}^{*}\right]=\sum_{i=1}^{\infty}\left(-\binom{m+k}{i}\binom{l}{i}+\binom{h+l}{i}\binom{k}{i}\right) i!\partial_{k+l-i, m+h+k+l-i}^{*}$,
and when $k=1, l=1$,

$$
\begin{equation*}
\left[\partial_{1, m+1}^{*}, \partial_{1, h+1}^{*}\right]=(h-m) \partial_{1, m+l+1}^{*} \tag{5.2}
\end{equation*}
$$

In order to obtain $\partial_{m, l}^{*} \tau(n ; t, z)$ by means of ASvM, we need to consider the Taylor expansion of $X(n ; \lambda, \mu)$ in μ at the point of λ :

$$
\begin{equation*}
X(n ; \lambda, \mu)=\sum_{m=0}^{\infty} \frac{(\mu-\lambda)^{m}}{m!} \sum_{l=-\infty}^{\infty} \lambda^{-l-m} \tilde{W}_{l}^{(m)} \tag{5.3}
\end{equation*}
$$

where

$$
\sum_{l=-\infty}^{\infty} \lambda^{-l-m} \tilde{W}_{l}^{(m)}=\left.\partial_{\mu}^{m}\right|_{\mu=\lambda} X(n ; \lambda, \mu)
$$

The first few items of $\tilde{W}_{l}^{(m)}$ are

$$
\begin{align*}
& \tilde{W}_{l}^{(0)}=\delta_{l, 0}, \\
& \tilde{W}_{l}^{(1)}=\tilde{P}_{l}, \\
& \tilde{W}_{l}^{(2)}=\sum_{i+j=l}: \tilde{P}_{i} \tilde{P}_{j}:-(l+1) \tilde{P}_{l}, \tag{5.4}\\
& \tilde{W}_{l}^{(3)}=\sum_{i+j+k=l}: \tilde{P}_{i} \tilde{P}_{j} \tilde{P}_{k}:-\frac{3}{2}(l+2) \sum_{i+j=l}: \tilde{P}_{i} \tilde{P}_{j}:+(l+1)(l+2) \tilde{P}_{l},
\end{align*}
$$

where

$$
\tilde{P}_{i}= \begin{cases}\partial_{i}, & i>0 \\ 0, & i=0 \\ -i t_{-i}+(-1)^{-i-1} n, & i<0\end{cases}
$$

Based on the ASvM formula in the form of wavefunctions (4.19), the Taylor expansion of Y (4.15) and X given by (5.3), we can introduce another expression of the ASvM formula which is in the form of tau function. It can be regarded as a discrete analog of the original ASvM formula [16] of the KP hierarchy.

Theorem 5.2. For $m \geqslant 0$ and for all l, there is

$$
\begin{equation*}
\partial_{m, l+m}^{*} \tau(n ; t)=\frac{\tilde{W}_{l}^{(m+1)} \cdot \tau(n ; t)}{m+1} \tag{5.5}
\end{equation*}
$$

Proof. Note

$$
Y\left(\partial^{*}\right)=\sum_{m=0}^{\infty} \frac{(\mu-\lambda)^{m}}{m!} \sum_{l=-\infty}^{\infty} \lambda^{-l-m-1} \partial_{m, m+l}^{*},
$$

Substituting wavefunctions $w(n ; t, z)$ given by (2.14) into the ASvM formula (4.19), we obtain $X(n ; \lambda, \mu) \frac{G(z) \tau(n ; t)}{\tau(n ; t)}=(\lambda-\mu) Y(n ; \lambda, \mu) \frac{G(z) \tau(n ; t)}{\tau(n ; t)}$, $\frac{\tau(n ; t) \cdot G(z)(X(n ; t, z) \tau(n ; t))-(G(z) \tau(n ; t)) \cdot X(n ; t, z) \tau(n ; t)}{\tau^{2}(n ; t)}$

$$
\begin{gathered}
=(\lambda-\mu) Y\left(\partial^{*}\right) \frac{G(z) \tau(n ; t)}{\tau(n ; t)} \\
(G(z)-1) \frac{X(n ; \lambda, \mu) \tau(n ; t)}{\tau(n ; t)} \cdot \frac{G(z) \tau(n ; t)}{\tau(n ; t)} \\
=(G(z)-1) \frac{(\lambda-\mu) Y\left(\partial^{*}\right) \tau(n ; t)}{\tau(n ; t)} \cdot \frac{G(z) \tau(n ; t)}{\tau(n ; t)} .
\end{gathered}
$$

So we have

$$
X(n ; \lambda, \mu) \tau(n ; t)=(\lambda-\mu) Y\left(\partial^{*}\right) \tau(n ; t)+c \tau(n ; t),
$$

which can be expressed as

$$
\begin{aligned}
&\left(1+\sum_{m=1}^{\infty} \frac{(\mu-\lambda)^{m}}{m!} \sum_{l=-\infty}^{\infty} \lambda^{-l-m} \tilde{W}_{l}^{(m)}\right) \cdot \tau(n ; t) \\
&=\sum_{m=0}^{\infty} \frac{(\mu-\lambda)^{m+1}}{m!} \sum_{l=-\infty}^{\infty} \lambda^{-l-m-1} \partial_{m, m+l}^{*} \cdot \tau(n ; t)+c \tau(n ; t)
\end{aligned}
$$

according to Taylor expansions (4.15) and (5.3). Then, taking $c=1$, and comparing the powers of $\mu-\lambda$ and λ on both sides, (5.5) is verified.

Furthermore, with $\partial_{m, l}^{*} \tau(n ; t)$ (5.5) we can obtain another expression of the action of additional symmetries on wavefunctions.

Theorem 5.3. For $m \geqslant 0$, and $\forall l$,

$$
\begin{equation*}
\partial_{m, m+l}^{*} w(n ; t, z)=(G(z)-1) \frac{\left(\tilde{W}_{l}^{(m+1)} / m+1\right) \cdot \tau(n ; t)}{\tau(n ; t)} \cdot w(n ; t, z) \tag{5.6}
\end{equation*}
$$

Proof. Using $w(n ; t, z)$ in (2.14) and $\partial_{m, l}^{*} \tau(n ; t)$ in (5.5), by a straightforward calculation, we obtain

$$
\begin{align*}
& \partial_{m, m+l}^{*} w(n ; t, z)=\partial_{m, m+l}^{*}\left(\frac{G(z) \tau(n ; t)}{\tau(n ; t)}(1+z)^{n} \exp \sum_{i=1}^{\infty}\left(t_{i} z^{i}\right)\right) \\
& \quad=\frac{\tau(n ; t) \cdot G(z)\left(\partial_{m, m+l}^{*} \tau(n ; t)\right)-G(z) \tau(n ; t) \cdot \partial_{m, m+l}^{*} \tau(n ; t)}{\tau^{2}(n ; t)}(1+z)^{n} \exp \sum_{i=1}^{\infty}\left(t_{i} z^{i}\right) \\
& \quad=w(n ; t, z)\left((G(z)-1) \frac{\partial_{m, m+l}^{*} \tau(n ; t)}{\tau(n ; t, z)}\right) \\
& \quad=w(n ; t, z)\left((G(z)-1) \frac{\left(\tilde{W}_{l}^{(m+1)} / m+1\right) \cdot \tau(n ; t)}{\tau(n ; t, z)}\right) \tag{5.7}
\end{align*}
$$

As a simple application of (5.6), we can obtain constraints on tau functions. For example, from

$$
\begin{equation*}
\partial_{m, l+m}^{*} w(n ; t, z)=0, \tag{5.8}
\end{equation*}
$$

we have

$$
(G(z)-1) \frac{\tilde{W}_{l}^{(m+1)} \cdot \tau(n ; t)}{(m+1) \tau(n ; t)}=0
$$

or equivalently,

$$
\begin{equation*}
\frac{\tilde{W}_{l}^{(m+1)} \tau(n ; t)}{m+1}=c \tau(n ; t) \tag{5.9}
\end{equation*}
$$

Here, we would like to discuss several special cases of the above formula. First, let $m=0$; then $\partial_{0, l}^{*} w(n ; t, z)=0$ implies

$$
\tilde{W}_{l}^{(1)} \tau(n ; t)=\tilde{P}_{l} \tau(n ; t)=c \tau(n ; t)
$$

Here, \tilde{P}_{l} is given by (5.4). Secondly, let $m=1$; then $\partial_{1, l+1}^{*} w(n ; t, z)=0$ implies

$$
\frac{1}{2} \tilde{W}_{l}^{(2)} \tau(n ; t)=c \tau(n ; t)
$$

With the form of $\tilde{W}_{l}^{(2)}$ in (5.4), that is

$$
\begin{equation*}
\left(\frac{1}{2} \sum_{i+j=l}: \tilde{P}_{i} \tilde{P}_{j}:-(l+1) \tilde{P}_{l}\right) \cdot \tau(n ; t)=\mathcal{L}_{l} \tau(n ; t)=c \tau(n ; t) \tag{5.10}
\end{equation*}
$$

combining the results of $m=0$ and $m=1$, for any $l \in \mathbb{Z}$, we have

$$
\begin{equation*}
\frac{1}{2} \sum_{i+j=l}: \tilde{P}_{i} \tilde{P}_{j}: \tau(n ; t)=\mathcal{L}_{l} \tau(n ; t)=c \tau(n ; t) \tag{5.11}
\end{equation*}
$$

Because of

$$
\begin{equation*}
\left[\mathcal{L}_{l}, \mathcal{L}_{m}\right]=(l-m) \mathcal{L}_{l+m}+\delta_{l+m, 0}\left(l^{3}-l\right) \cdot c, \tag{5.12}
\end{equation*}
$$

these are just the Virasoro constraints on $\tau(n ; t)$.

6. Conclusions and discussion

In this study we defined the vertex operators for dKP and introduced Sato's Bäcklund transformations for the dKP hierarchy through pseudo-difference operators. Additional symmetries were also introduced by Dickey's approach. Here we use the operator \triangle instead of the operator Γ to define the dKP hierarchy. An obvious advantage [20] of this is that there is a strong connection between the tau functions of dKP and of KP (3.18). With this useful connection, we can use Dickey's convenient approach [17] to obtain the ASvM formula for dKP. In addition, by this connection and the known results of KP's, we can simplify our proof and obtain the difference Fay identity for dKP.

The algebraic structures of additional symmetries and Sato's Bäcklund transformations were also introduced. And ASvM for dKP, which sets up the connection between additional symmetries and Sato's Bäcklund transformations, also constructs the connection between their algebraic structures. In addition, we obtained the ASvM in the form of tau functions, with which we can conveniently get the actions of additional symmetries on the tau function from the actions of additional symmetries on wavefunctions.

Note that when $n=0$, the algebraic structures go back to the algebraic structure of the KP hierarchy. And the corresponding results in the KP hierarchy can be obtained automatically.

With the additional symmetries and ASvM the constraint-dKP can be well defined, which we will try in the near future.

Acknowledgments

The author cordially thanks Dr Li Yishen (USTC, China) for the long-term support and the referees for their careful reading and helpful comments.

References

[1] Olver P J 1993 Applications of Lie Groups to Differential Equations 2nd edn (New York: Springer)
[2] Oevel W and Fuchssteiner B 1982 Explicit formulas for symmetries and conservation laws of the KadomtsevPetviashvili equation Phys. Lett. A 88 323-7
[3] Fuchssteiner B 1983 Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equation Prog. Theor. Phys. 70 1508-22
[4] Chen H H, Lee Y C and Lin J-E 1983 On a new hierarchy of symmetry for the Kadomtsev-Petviashvili equation Physica D 9 439-45
[5] Li Y and Zhu G 1986 New set of symmetries of the integrable equations, Lie algebra and nonisospectral evolution equations: II. AKNS system J. Phys. A: Math. Gen. 19 3713-25
[6] Orlov A Yu and Schulman E I 1986 Additional symmetries of integrable equations and conformal algebra representation Lett. Math. Phys. 12 171-9
[7] Date E, Kashiwara M, Jimbo M and Miwa T 1983 Transformation groups for soliton equations Nonlinear Integrable Systems-Classical and Quantum Theory (Kyoto 1981) ed M Jimbo and T Miwa (Singapore: World Scientific) pp 39-119
[8] Dickey L A 2003 Soliton Equations and Hamiltonian Systems 2nd edn (River Edge, NJ: World Scientific)
[9] Kontsevich M 1992 Intersection theory on the moduli space of curves and the matrix airy function Commun. Math. Phys. 147 1-23
[10] Adler M and van Moerbeke P 1992 A matrix integral solution to two-dimensional W_{p}-gravity Commun. Math. Phys. 147 25-56
[11] Dickey L A 1993 Additional symmetries of KP, Grassmanian, and the String equation Mod. Phys. Lett. A 8 1259-72
[12] Dickey L A 1993 Additional symmetries of KP, Grassmanian, and the String equation II Mod. Phys. Lett. A 8 1357-77
[13] Takasaki K 1993 Quasi-classical limit of BKP hierarchy and W-infinity symmetries Lett. Math. Phys. 28 177-85
[14] Tu M H 2007 On the BKP hierarchy: additional symmetries, Fay identity and Adler-Shiota-van Moerbeke formula Lett. Math. Phys. 81 91-105
[15] Date E, Kashiwara M and Miwa T 1981 Transformation groups for soliton equations II Vertex operators and τ functions Proc. Japan Acad. A 57 387-92
[16] Adler M, Shiota T and van Moerbeke P 1994 From the w_{∞}-algebra to its central extension: a tau-function approach Phys. Lett. A 194 33-43
[17] Dickey L A 1995 On additional symmetries of the KP hierarchy and Sato's Bäcklund transformation Commun. Math. Phys. 167 227-33
[18] van de Leur J 1995 The Adler-Shiota-van Moerbeke formula for the BKP hierarchy J. Math. Phys. 36 4940-51
[19] Kupershimidt B A 1985 Discrete Lax equations and differential-difference calculus Astérisque 123 1-212
[20] Haine L and Iliev P 2000 Commutative rings of difference operators and an adelic flag manifold Int. Math. Res. Not. 6 281-323
[21] Liu S, Cheng Y and He J 2009 The determinant representation of the gauge transformation for the discrete KP hierarchy (arXiv:0904.1868)
[22] Yao Y, Liu X and Zen Y 2009 A new extended discrete KP hierarchy and generalized dressing method J. Phys. A: Math. Theor. (arXiv:0907.2783)
[23] Sun X-L, Zhang D-J, Zhu X-Y and Chen D-Y 2009 Symmetries and Lie algebra of the differential-difference Kadomstev-Petviashvili hierarchy arXiv:0908.0382
[24] Adler M and van Moerbeke P 1999 Vertex operator solutions to the discrete KP-hierarchy Commun. Math. Phys. 203 185-210
[25] Dickey L A 1999 Modified KP and discrete KP Lett. Math. Phys. 48 277-89
[26] Liu S 2009 Algebraic constraints on tau functions of p reduced KP with string equation arXiv:0906.3917
[27] Dijkgraaf R, Verlinde H and Verlinde E 1991 Loop equations and Virasoro constrains in nonperturbative two-dimensional quantum gravity Nucl. Phys. B 348 435-56
[28] Fukuma M, Kawai H and Nakayama R 1991 Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity Int. J. Mod. Phys. A 6 1385-406

[^0]: 1 Author to whom any correspondence should be addressed.

